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Abstract. Heterogenous reactions under transport control can be modelled in terms of a film of reaction products
covering the reaction surface. Such a surface defines a unique direction in space which may be used to classify
transport processes as transverse or longitudinal. Since crossed-gradient transport occurs, a Péclet number Pe
is introduced, representing the ratio of the velocities characterizing transverse and longitudinal transport, with
transverse transport being by film diffusion of some reacting species and longitudinal transport corresponding to
film flow as with wetting processes. If the influence of viscosity is taken into account in terms of a Schmidt number
Sc, the long-wave approximation for the evolution of thin films on reaction surfaces is shown to be equivalent to a
distinguished limit Pe! 0; Sc!1, while keeping 1=(Sc Pe2) = O(1). The long-wave approximation is derived
by an application of the method of strained variables which leads to a film equation for the spatio-temporal evolution
of the film thickness h which represents the crucial element for a complete solution of the thermo-hydrodynamics
of the layer. Since film generation due to chemical reaction and film removal due to evaporation may compensate
for certain thicknesses h, surface phases are found to occur which correspond to stationary layers of uniform
thickness. The evolution of the surface layer is shown to be a generalized reaction-diffusion process, with surface
waves representing dynamical transitions between surface phases.

Key words: thin films, surface phases, surface waves, heterogeneous combustion, surface ignition, surface extinc-
tion

1. Outline of the model

A combustion process is said to be heterogeneous if it is based on exothermal chemical
reactions taking place on the surface of liquid or solid bodies. Such a reaction surface could be
provided by condensed-phase fuel or oxidizer components, but also by the walls of the reaction
vessel or some condensed-phase catalyst. Since the reaction sites in the case of heterogeneous
combustion are confined to lie on a material surface, a major part in the overall reaction
mechanism must be played by transport processes which are the object of the investigation to
be presented. The surface normal of the reaction surface defines a reference direction in space.
Therefore, transport processes may be classified as transverse or longitudinal, depending on
whether they are parallel with the normal or in tangential directions.

A simple catalyzed transformation as displayed in Figure 1(a) may serve as an illustration.
This example, particularly, describes the overall transformation of speciesA into speciesB.

It involves a number of consecutive steps which represent physical and chemical subprocesses.
The reaction sites are supposed to lie on the surface of a solid body which is embedded in an
ambient atmosphere containing the molecules of the ‘fresh’ reactantA and the productB. The
reaction mechanism comprises transport ofA in the ambient atmosphere towards the reaction
surface, followed by adsorption A!A# and chemical transformation A#!B#. Then there
is surface transport B#!B#, eventually followed by desorption B#!B and transport of B
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236 D. Meinköhn and H. Sprengel

Figure 1(a). Heterogeneous Reaction A!B on a
solid substrate, involving adsorption A!A#, desorp-
tion B#

!B and surface transport B#
!B#.

Figure 1(b). Continuous liquid film of reaction prod-
ucts screening the reaction surface on the solid sub-
strate (~I flux of fresh reactants, ~J flux of evaporated
products, ~u velocity field, h film thickness, wform rate
of film formation, wvap rate of film evaporation).

away from the reaction surface in the ambient atmosphere (for a more elaborate discussion
of further examples, compare [1]). The adsorbed product moleculesB# effectively screen the
reaction surface by blocking to a certain extent the access of the incoming A-molecules to
the reaction sites, with the extent of the screening depending on the surface coverage cs of
B-molecules. In our model, this screening effect is assumed to be caused by a continuous
surface layer of thickness h, formed by the reaction products. Consequently, the surface cover
of product molecules is taken to represent a thermodynamic phase, to be described in terms
of continuum-theoretic concepts. To reach the reaction sites covered by the layer, the fresh
reactant A has to cross the layer by convection-diffusion processes, with the screening effect
due to the transport resistance of the layer.

If �V designates the molecular volume of the product species B, the layer thickness h is
given by:

h = �V cs: (1)

For a sparse molecular coverage of the surface, h will be less than a molecular diameter.
Surface layers with thicknesses which are measured on some microscopic scale defined in
terms of the molecular diameter are termed ‘microscopic’. In our model, microscopic layers
are therefore taken as 2-dimensional surface phases, since they are of macroscopic extension
only in longitudinal directions along the surface. A continuous increase in the layer thickness
from microscopic to macroscopic values corresponds to a continuous transition from 2-
dimensional to 3-dimensional thermodynamics in the description of the layer. If h is restricted
to be of microscopic thickness, then the transition from microscopic to macroscopic layers is
expressed by

h!1: (2)

Equation (2) indicates that macroscopic thicknesses are reached from the range of microscopic
thicknesses by way of an asymptotic limit. The transition range for which thicknesses change
from microscopic to macroscopic values is termed ‘mesoscopic’.

Microscopic layers with h! 0 are modelled by taking them as a 2-dimensional ideal gas
which represents a continuum as with the analogous 3-dimensional ideal gas. From a kinetic
point of view, a continuous film is obtained from a molecular covering with the help of a
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suitable averaging procedure. A thermodynamic description of even very sparse molecular
coverings remains possible, since the individual molecules are ‘collision’-coupled indirectly
via the substrate on which they reside.

Due to the assumption of continuity for layers of all thicknesses, our model equations cover
all thickness ranges alike, independent of whether they are microscopic or macroscopic. It is
therefore possible to treat the evolution of nonuniform layers with strongly varying thickness,
with strong nonuniformity giving rise to surface transport (also called ‘lateral’ transport [2])
like surface flow and surface diffusion. Such strong nonuniformity involving a transition in
the layer thickness from microscopic to macroscopic values arises for instance in the form of
drops (often called ‘caps’) and film ruptures. Our model equations are particularly designed
to investigate the formation, spreading and retraction of surface drops and ruptures. It should
be observed, though, that large surface patches which are macroscopic in extent and which
are entirely devoid of a covering layer do not occur, due to the effect of the chemical reaction.
Therefore, a ‘dry spreading’ [3] of the layer is not included.

Since our model treats both microscopic and macroscopic layers on the same continuum-
theoretic footing, it allows to interpret the model equations for microscopic layers in terms
of concepts defined for macroscopic layers. For instance, surface tension associated with
the outer surface of a layer is defined for macroscopic thicknesses. In our approach, this
surface-tension concept can be carried over to the case of microscopic layers.

Since reactant A is consumed due to chemical conversion, a transverse concentration
gradient exists which drives the fresh molecules A towards the reaction sites on the catalyst
surface. In order to reach it, A must traverse the surface layer. For this to occur, A must
dissolve in the layer at its outer surface, followed by convective-diffusive transport across the
layer to the reaction sites which are at the bottom of the layer. Chemical reaction then leads
to an increase of the layer thickness due to the formation of B#-molecules. In our model, the
adsorbed moleculesA# andB# of Figure 1(a) are modelled in terms of a liquid layer, with B#

forming the liquid and A# an admixture dissolved in it. The process of desorptionB#!B of
Figure 1(a) is modelled in terms of an evaporation process at the outer surface of the layer,
leading to a reduction in layer thickness.

It is a primary proposition of our model that the screening effect of the surface layer is of
controlling importance. This is to say that the model is based on the assumption of transport
control which presumes that the characteristic transport times are much larger than the times
characterizing reaction. This proposition allows the model to be formulated exclusively in
terms of physical processes governing transport by diffusion and convection which are much
better understood than the actual chemistry of heterogeneous reactions. In our model the
screening effect turns out to be equivalent to a thickness-dependent reaction rate which is
associated with a thickness-dependent rate of film formation wform = wform(h).

In the same spirit, we assume that product transport in the ambient atmosphere is slow
in comparison with the characteristic time of evaporation. Consequently, a liquid–vapour
equilibrium is assumed to hold locally on the outer surface of the layer, so that the concentration
of product molecules on the vapour side of the surface is given in terms of the saturated vapour
pressure pvh which is a function of the thickness h for microscopic and mesoscopic layers.

If the concentration of product molecules is assumed to vanish at large distances from the
layer, the rate of vaporization wvap is therefore given by

wvap � p
v
h: (3)
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Our approach in terms of a continuous surface layer of nonuniform thickness h and the
fluxes I; J of speciesA;B is illustrated in Figure 1(b).

The processes of film formation (caused by chemical reaction) and film removal (caused
by desorption or evaporation) are determined by transport processes in a direction which
is transverse, due to their driving gradients. Lateral transport, like surface diffusion [2] or
convective film flow [4], is longitudinal. If transverse transport is characterized in terms of a
velocity v0, longitudinal transport in terms of a velocity vs, the ratio Pe = v0=vs may be formed
which represents a Péclet number. Our model is intended to treat heterogeneous combustion
in terms of a superposition of transverse and longitudinal layer transport for which Pe � 1,
indicating that transverse transport is supposed to be very slow in comparison with longitudinal
transport. The assumption of Pe � 1 also arises in the similar case of convective diffusion
in liquid boundary layers [5, 6]. For our model, vs will be shown to have the properties of a
sound velocity which characterizes the propagation of thickness perturbations in longitudinal
directions. The particular aim of this paper is to investigate the range of mesoscopic layers
which are of significance due to their intermediate position between the two qualitatively
different ranges of microscopic and macroscopic layer thicknesses. For mesoscopic layers, vs
is given by a closed expression derived with the help of the Deryagin’s disjoining pressure [3].

If the reaction surface is covered with a nonuniform layer, it is ‘non-equiaccessible’ [5, 6]
for the reactants in the ambient atmosphere. For thin continuous layers, concepts may be used
which were developed for convective diffusion in liquid boundary layers [5, 6] and for flow
phenomena in shallow water [7]. These concepts allow to model the thermo-hydrodynamics of
thin films in terms of linear field equations for state variables which are strongly coupled due
to nonlinear boundary conditions. Particularly, we generalize the long-wave approximation
for thin films by Burelbach, Bankoff and Davis [4], in order to include growth and decay of
surface layers due to chemical reaction, desorption and evaporation.

For nonuniform surface layers, lateral transport leads to typical combustion phenomena
like ignition and extinction which characterize the propagation of combustion. Since it is
accompanied by a change in surface-layer thickness, lateral transport represents a surface wave.
If such a surface wave, for instance, brings about a spreading reduction in layer thickness, an
increase in reaction will spread on the surface because of the diminished screening capacity of
the layer. For heterogeneous combustion, such a surface wave is therefore associated with with
‘surface ignition’ (or ‘surface inflammation’ [6]). The converse phenomenon, i.e. a surface
wave bringing about a spreading increase in layer thickness, corresponds to surface extinction.

2. A motivating example

A typical application of our model is in the field of fuel-particle combustion where oxides
are often found to form a nonuniform layer covering the fuel surface which corresponds to
the site of the reaction [1]. Examples are provided by the cases of boron combustion [8] and
aluminium combustion [9].

For boron (melting point 2450 K, boiling point 3930 K), surface combustion is observed.
Since the boiling point of boric oxide B2O3 (melting point 723 K, boiling point 2316 K) is
lower than the melting point of solid boron, combustion of boron involves two consecutive
stages

� an ignition stage at temperatures below 2316 K, for which the solid boron is covered with
a liquid layer of boric oxide which is macroscopic in thickness;
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� a stage of full-fledged combustion at temperatures beyond 2316 K, but below the boron
boiling point due to the high value of the heat of vaporization for boron, with surface
burning rather than the usual vapour-phase burning.

In both stages, the reaction products are formed at the boron surface. Both stages therefore
involve an oxide film covering the reaction surface which the oxygen of the ambient atmosphere
must traverse. Whereas in the first stage the film may be of macroscopic thickness, for the
second stage only microscopic thicknesses occur which characterize an adsorption layer.

For ignition to be successful, a transition from the first to the second stage needs to be
achieved, while extinction corresponds to the converse phenomenon.

If the adsorption layer is taken to represent a 2-dimensional continuum, a reaction model
may be set up as outlined in Section 1. Particularly, the conversion of boron to boron oxide
involves the atmospheric oxygen to be dissolved in the liquid oxide layer and to be transported
across the layer to the reaction sites on the boron surface which is underneath. There are
many examples of transport-dominated growth of oxide films, even at elevated temperatures
[10], but, in the temperature range for boron combustion, experiments are difficult to perform,
particularly on account of the presence of oxygen. In the case of boron combustion there is
thus still some dissent as to the exact values of the relevant transport parameters, specifically as
to the solubility and the diffusivity of oxygen in liquid boric oxide [8, 11]. Oxygen diffusivity
is found to be roughly (2� 4)�10�6 m2=s at 2000 K, whereas solubility follows if a particular
solution theory model is assumed. Worked examples are ideal dilute-solution theory leading
to Henry’s law [12] or regular solution theory for higher oxygen partial pressure [13].

The relevant transport parameters for liquid boron oxide �, k, D (viscosity, thermal dif-
fusivity, diffusivity for O2 diffusion) are temperature-dependent, as shown by experimental
investigations (for � see [16], for k see [14], for D see [8]). Since calculations [15] demon-
strate that the temperature difference Tch across the film is small in comparison with film
and substrate temperatures ([15] shows Tch< 17 K for substrate temperatures in the range of
2000 K), constant values �0, k0, D0 will be assumed.

A measure of the relative importance of longitudinal as well as transverse viscous flow of
oxide (containing the dissolved oxygen) in comparison with oxygen diffusion is provided by
the Schmidt number Sc. For boron oxide at about 2000 K, the kinematic viscosity �0 is equal
to 2�72 m2=s [16], and the diffusivityD0 of oxygen is chosen to be 4�10�6 m2=s [17], whereby
Sc = �0=D0 results in the range of 106. The fact that Sc� 1 will be used in the long-wave
approximation as introduced in Section 4.

The models for boron and aluminium particle combustion [8, 9] are both marred by an
important shortcoming in that they do not provide for symmetry-breaking. This implies
that for spherical particles in a stagnant atmosphere the symmetry is to remain spherical
for all stages of the combustion process. But there is ample experimental evidence to the
contrary, i.e. for symmetry breaking, as evidenced by the strongly curved tracks of igniting
and combusting boron and aluminium particles (see e.g. [18, 19]). In the case of aluminium,
surface nonuniformity leading to macroscopic oxide caps is observed [20] which has been
identified as the primary source of excessive slag formation in rocket boosters with fuel grains
heavily laden with aluminium.

Layer nonuniformity leads to surface transport, since surface gradients of thickness, tem-
perature and oxygen concentration arise. For layers which are thin enough, gradients in the
internal pressure are essentially due to nonuniformities in the layer thickness, leading to sur-
face convection or surface diffusion as the case may be. The functional dependence of the
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240 D. Meinköhn and H. Sprengel

internal pressure on the layer thickness remains yet to be determined in the case of oxide lay-
ers for boron and aluminium particles. It can be obtained from the corresponding adsorption
isotherms, to be derived for various suitable temperatures. For an experimental investigation
of the evolution of a liquid oxide film on solid boron, polarization ellipsometry could be tried,
which has been successfully employed already in an investigation of boron-oxide films on
platinum substrates [21].

For the internal pressure ph in the transition region of mesoscopic thicknesses, its depen-
dence on the layer thickness h is given in terms of an additive contribution, the so-called
‘disjoining pressure’ �(h) [22]. It has the general property of �! 0 for h!1, with h mea-
sured on some microscopic scale (Equation (2)). Since there is as yet no general expression
for � in this range, a simple expression in terms of a Hamaker constant will be assumed (for
a general idea of the possible values of the Hamaker constant, see [2]).

The dependence of ph on the layer thickness will be used to define a sonic velocity
vs =

p
(h0=�)@ph=@h which characterizes the longitudinal propagation of surface-waves.

Since Sc� 1, transverse transport is characterized by the velocity v0 = D0=h0 of diffusion.
Therefore, a Péclet number Pe = v0=vs can be introduced to compare transverse transport
with surface-wave propagation. Section 4 will exploit the consequences of Pe� 1. For boron
oxide, vs is given once ph = p(h) is known. Generally, @ph=@h can attain large values for
films which are thin enough [2].

The adsorption isotherms therefore govern longitudinal transport as well as adsorption and
desorption (or, for thicker layers, condensation and evaporation). For macroscopic layers, King
[15] uses a Clausius–Clapeyron expression for the vapour pressure pv of boric oxide which
is given in terms of the substrate temperature Tp as: pv = 1�51 � 108 exp(�44000=Tp) [atm].
An indication of the influence of solid boron on the partial pressure of B2O3 is provided by
the experimental results of Scheer [23].

Another driving force for surface flow is associated with the temperature and composi-
tion dependence of the surface tension for the liquid layer, resulting in thermal and solutal
Marangoni effects. For liquid boron oxide, the thermal Marangoni effect has been experimen-
tally determined for temperatures ranging from 770 to 2300 K [24]. Here, the surface tension
is found to range from 70 to 120 dyn/cm. There are no experimental results as to the solutal
Marangoni effect, but it is known to be generally much weaker than its thermal analogue.

3. Thermo-hydrodynamics: field equations and boundary conditions

In order to set up a simple model, the heterogeneous combustion process is to take place
on a solid support (the fuel, say, or a catalyst) with a plane surface defined to be the site of
the reaction. This reaction surface is covered with a continuous liquid layer of nonuniform
thickness consisting of reaction products, the layer separating the reaction surface from the
gaseous reactants contained in an ambient atmosphere. The layer is taken to be bounded both
at the bottom and at the top (the outer surface) by an interface that is assumed to be a Gibbs
dividing surface [25]. With such an approach, a surface tension associated with the top surface
of the layer is defined for all layers, i.e. even in the case of microscopic layer thicknesses.
For a layer bounded by two dividing surfaces, the thermo-hydrodynamics are determined by
boundary conditions which take the form of jump conditions [26]. The large difference in
density, viscosity, species and heat diffusivity between the layer and the ambient bulk phases
(the solid support and the ambient atmosphere) permits to formulate a ‘one-sided model’ for
the layer alone [4].
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Let z designate the transverse coordinate in the direction of the surface normal, x1; x2 being
the longitudinal coordinates in tangential directions. Let ~v, T , C designate the film velocity,
the temperature and the mass fraction of the reactant A which originates from the ambient
atmosphere. Let w be the transverse component and u1, u2 the longitudinal components of
~v. Then the following field equations model the thermo-hydrodynamics of an incompressible
film of density � (Figure 1(b))

r � ~v = 0; (4)

(@t + ~v � r)C = r2C; (5)

(@t + ~v � r)T = (k0=D0)r
2T; (6)

(@t + ~v � r)~v = (�0=D0)(�r(p+�) +r2~v); (7)

where k, D, � designate the thermal diffusivity, the diffusivity of speciesA in the film liquid
and the viscosity of the film. These parameters are functions of the temperature T , but for
small temperature differences across the film they may be replaced by constant values k0, D0,
�0 corresponding to an appropriate reference temperature T0.

In Equation (7), p designates the difference between the thermodynamic pressure in a
macroscopic film and the pressure p1 in the ambient atmosphere, whereas the contribution
�(h) represents the so-called ‘disjoining pressure’ [3] which is a function of the thickness h
and arises in microscopic and mesoscopic films due to van-der-Waals interaction between the
molecules of the film and of the substrate. For mesoscopic films, the following expression has
been derived for a simple case [22]

�(h) = �=h3; (8)

where � designates the so-called ‘Hamaker constant’. For a transition from mesoscopic to
macroscopic films �(h)! 0 according to (8), since h!1 from (2). This expresses the
physical fact that for bulk films, on account of their small range, van-der-Waals interactions
between the molecules of the film and the molecules of the substrate give rise to a negligible
contribution.

According to (4)–(7), the thermo-hydrodynamics of films are determined by the Lewis
number Le = �=D and by the Schmidt number Sc = �=D. This results from a dimensionless
representation of Equations (4)–(7), to be obtained if the following scaling assignments are
made (primed variables are dimensional, unprimed variables are dimensionless)

~x 0 = h0~x; z0 = h0z; t0 = (h2
0=D0)t; ~v 0 = (D0=h0)~v

(p� p1)0 = (��0D0=h
2
0)p; C 0 = CeqC; (T � �0)

0 = TchT:

)
(9)

The following scales are used in the transformations of (9): h0 = reference film thickness,
�0, D0 = reference values of viscosity and diffusivity, Ceq = equilibrium mass fraction of A
in the liquid, determined e.g. by Henry’s law, �0 = mean temperature of the solid substrate,
Tch = reference temperature difference for the surface layer. It should be noted that C 0 is
dimensionless by definition since it represents a mass fraction. Thus, C is the scaled mass
fraction associated with C 0 according to (9).

As with capillary waves, h0 is meant to set a scale, so that long waves may be distinguished
from capillary waves which differ as to the range of wave lengths �. For long waves ��h0

is required. Restriction to long waves therefore implies restriction to large-scale structures.
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According to the founding principles of our model, physicochemical equilibrium is assumed
to hold locally at the top surface of the layer. By Henry’s law, the mass fraction Ceq of the
componentA on the liquid side of the top interface is equal to the atmospheric mass fraction
multiplied by a Henry constant. Since transport of A in the liquid layer is assumed to be
controlling (i.e. is assumed to be very slow), the atmospheric concentration of A is taken to
be a given constant.

On the gas side of the top interface, the local partial pressure of the layer material (the
reaction productB) is taken to be equal to its saturation pressure pvh, in line with the assumption
of transport of B in the ambient atmosphere controlling the evaporation process. Since far
away from the top surface the atmospheric concentration cB of B is assumed to vanish, a
net evaporative mass flux J 0 is found to result. Similarly, due to the consumption of A at the
bottom surface of the layer, a net mass flux I 0 of A is found to traverse the layer. A reference
evaporative mass flux Jch defined as

Jch = k0�cp
Tch

h0L
; (10)

is employed to make both mass fluxes dimensionless. In Equation (10), L designates the heat
of vaporization and cp the specific heat of the layer material. Consequently, the dimensionless
mass fluxes I of A and J of B follow as

J 0 = JchJ; I 0 = JchI: (11)

For the flux J 0 in the ambient atmosphere we find

J 0 = �ev((c
s
B)

0 � c1B ) = �ev(c
s
B)

0: (12)

In Equation (12), �ev designates the transfer coefficient of B-molecules in the ambient
atmosphere, with �ev determined by the ratio of the atmospheric diffusivity ofB and the effec-
tive distance beyond which the concentration is cB = c1B ' 0. At the surface, the concentration
csB is given in terms of the saturation pressure pvh of B-vapour

(csB)
0 =

�B

RT 0h
(pvh)

0: (13)

Here �B designates the molar mass of species B, T 0h the layer temperature at the top surface,
and R the universal gas constant.

The laws of Clausius–Clapeyron and of Kelvin may be combined to give pvh as

(pvh)
0 = exp

 
�
L

R

 
1
T 0h
�

1
Tb

!!
exp

 
Vm

RT 0h
�0(h)

!
: (14)

According to Kelvin’s law, an increase in internal pressure of the film leads to an increase in
pvh, which for its part leads to an increase in the rate of evaporation according to Equations
(12, 13). In (14), Vm designates the molar volume, whereas Tb corresponds to the boiling
temperature of the liquid at a saturation pressure pvh = 1 bar above a bulk layer (i.e. h =1).

According to (9), the dimensionless form Th of T 0h is obtained as

T 0h = �0 + TchTh: (15)
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Figure 2. Definition of normal ~n and tangent ~t for the top and for the bottom surface of the layer (~V velocity of
the top surface, Th temperature on the top surface).

Here, �0 = mean temperature of the solid substrate and Tch = a reference temperature
difference in the layer.

For thin layers, the difference between between T 0h and �0 is small and can be expressed in
terms of " = Tch=�0� 1 as follows

T 0h = �0(1 + "Th): (16)

The evaporation flux J 0 as given by (12) may then be linearized in terms of ", which gives

J 0(Th; h) = J 0(�0; h)

"
1 + Tch

TchL

R�2
0

�
1�

Vm�
0

L

�#
: (17)

The dimensionless flux J therefore results as

J =  (1 +�Th): (18)

In (18), the following assignments are used

 = J 0(�0; h)=Jch =  (h); (19)

� =
TchL

R�2
0

�
1�

Vm�
0(h)

L

�
= �(h): (20)

The fluxes as introduced with Equations (11) and (18) determine the kinematics of the top
surface of the layer, which is given in terms of the surface normal ~n and the surface velocity
~V (Figure 2).

According to our model, the top surface represents a Gibbs dividing surface given by

z = h(x1; x2; t): (21)

Its surface normal is ~n = f�rsh; 1g which is defined as pointing out of the film into the
ambient atmosphere. Here, rs designates the surface gradient (i.e. the surface nabla) that is
given by

rs = f@x1 ; @x2 ; 0g: (22)
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244 D. Meinköhn and H. Sprengel

The kinematics of the top surface are therefore determined by

@th� (~n � ~V )
q

1 + (rsh)2 = 0: (23)

In Equation (23), Vn = (~n � ~V ) represents the normal velocity of the top surface of the layer.
At the top surface of the layer, the following boundary conditions (given in dimensionless

form) must be imposed on the field equations (4–7)

~n � (~v � ~V ) = E(J + I); (24)

d~n � [(~v � ~V )C �rC] = I; (25)

C = 1 (i.e.: C 0 = Ceq): (26)

In (24), E = Jchh0=�D0 and in (25), d = �D0Ceq=h0Jch. Both coefficients E and d are
dimensionless.

The top surface of the layer corresponds to a liquid–vapour interface for which a stress
boundary condition [26] may be formulated through use of the momentum fluxes ~p on the
liquid side and ~p v on the vapour side of the interface. The stressed state of the interface is
expressed in terms of a surface tension �. On the liquid side of the interface, ~p is determined
by the flow field ~v whereas, analogously, on the vapour side ~p v is determined by the vapour
flow field ~v v .

The momentum flux ~p is given by

(~p )0 = �T0 � ~n+ �~v 0(~v 0 � ~n)! ~p = �T � ~n+
1
Sc
~v(~v � ~v): (27)

The momentum flux is scaled as: (~p )0 = (��0D0=h
2
0)~p . ~n designates the interface normal as

defined in Figure 2, and T designates the stress tensor which is given as

T0 = �p0E + ��0D0!T = �pE + D: (28)

Here, E designates the unit tensor, whereas D designates the deformation tensor given by the
symmetric part (r~v )+ of the tensor (r~v )

D = (r~v )+: (29)

Equation (28) represents a constitutive equation for the film liquid, with p defined as repre-
senting the dynamic pressure as used in (7). Stress tensor T and deformation tensor D are
scaled as follows (see Equation (9)): T0 = (��0D0=h

2
0)T and D0 = (D0=h

2
0)D.

The momentum flux ~p v on the vapour side is obtained analogously by using ~v v , Dv, Tv,
�v , �v in (27–29).

If surface phases do not occur on the top surface of the layer, then momentum equilibrium
in dimensionless form is expressed by

~p� ~p v + ��~n+
d�
ds
~t = 0: (30)

In Equation (30), the following scalings were used: �0 = (��0D0=h0)�; �
0 = �=h0, s0 = h0s.

Here, ~n, ~t designate the unit normal and the unit tangent vector as defined in Figure 2, s
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designates the arc length of a path along the curved interface, whereas � designates the mean
curvature of the interface.

In terms of the mass transfer, J 0 = �~v 0 � ~n = (�v~v v)0 � ~n expresses continuity. For �v� �,
obviously

~v 0 � ~n� (~v v)0 � ~n:

Therefore, Equation (30) is found to give in dimensionless form

(T� Tv) � ~n+
E

Sc
J(~v v � ~v ) + ��~n+

d�
ds
~t = 0: (31)

In (31), E as defined for Equation (24) was used, along with Sc = �0=D0.
Use of the no-slip boundary condition (~v v � ~v ) � ~t = 0 and �v� � leads to

J(~v v � ~v ) = J2(1=�v � 1=�)~n ' J2~n=�v:

For slow evaporation, the so-called ‘vapour recoil’ [4] may be neglected

J2=�v ' 0:

Therefore, the asymptotic limit

�v=�! 0; �v=�! 0

leads to the following stress boundary condition in terms of normal and tangential components

~n � T � ~n = �p+ ~n � D � ~n = ���; (32)

~t � T � ~n = ~t � D � ~n = �
d�
ds
: (33)

Equations (32, 33) are given in dimensionless variables which are obtained by a scaling as
defined by (9).

The nonscaled energy flux ~s is defined as

(~s )0 = ~v 0 � T0 � ~n� ~v 0 � ~n(~v 0)2�=2 + k0�cpr
0T 0 � ~n: (34)

In terms of ~s and ~s v, the energy boundary condition for the top surface of the layer is found
to be

(~s )0 � (~s v)0 + J 0L = 0: (35)

If ~s and ~s v are expressed according to (34), then Equation (35) leads to

~v 0 � T0 � ~n� (~v v)0 � T0v � ~n� 1
2J

0((~v 0)2 � ((~v v)0)2) + k0�cpr
0T 0 � ~n

�(k0�cp)
vr0(T 0)v � ~n+ J 0L = 0: (36)

Due to the no-slip boundary condition, the following may be assumed

1
2J [(~v

0)2 � ((~v v)0)2] ' �(1=2J)(J2=�v)2! 0;
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246 D. Meinköhn and H. Sprengel

which corresponds to neglect of vapour recoil. Use of the conditions for the asymptotic limit

�v=�! 0; �v=�! 0; pv=p! 0

results in a neglect of the contributions of the stresses

J 0L+ k0�cpr
0T 0 � ~n� (k0�cp)

vr0(T 0)v � ~n = 0: (37)

For slow evaporation, the heat transport on the vapour side may be modeled by Newton’s law
of cooling, expressed in terms of a Biot number Bi and a reference temperature T1 at large
distance from the layer. For these settings, (37) is found to give

J 0L+ k0�cpr
0T 0 � ~n+ Bi 0(T 0 � T 0

1
) = 0: (38)

Equation (38) states that the heat needed to vaporize layer material is provided by a heat flux
out of the layer interior, while a certain loss of heat to the ambient atmosphere is also taken
into account. The heat of dissolution of A-molecules in the layer liquid has been neglected
because it is anticipated to give rise to a very small contribution.

In dimensionless form, (38) results as

J + ~n � rT + Bi(T � T1) = 0: (39)

To obtain Equation (39), Bi 0 = (LJch=Tch)Bi and T 0
1

= �0 + TchT1 have been used. It
should be noted that due to our definition of Jch (see (10)), k0�cpTch=h0LJch = 1.

Equations (32, 33, 39) along with Equations (24–26) in conjunction with the field equations
(see (4–7)) form the ‘one-sided-model’ of Burelbach/Bankoff/Davis [4]. It must be enlarged
to account for the chemical reaction at the bottom surface of the layer due to which film
material is generated.

At the bottom interface, the flux I ofA-molecules which crossed the layer is converted into
B-molecules, thereby adding to the liquid of the layer. At the bottom of the layer, therefore,
the outgoing flux I is connected with an inflow J of layer material as

J = �
I: (40)

In (40), 
 designates a conversion factor given by stoichiometry and molecular weights.
According to the primary assumption of our model, transport of A-molecules in the liquid

layer is much slower than the chemical reaction converting A into B. Consequently, the
concentration C of A vanishes at the bottom interface

C = 0: (41)

The normal ~n at the bottom interface is also defined to point towards the exterior of the layer.
It is therefore given as: ~n = f0; 0;�1g (Figure 2).

Consequently, at the bottom of the interface the fluxes I and J are given in dimensionless
form as

~n � ~v = E(I + J) = �w; (42)

d~n � (~vC �rC) = �d~n � rC = I = d @zC: (43)
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The constants E, d appearing in (42) and (43) have already been introduced in (24) and (25)
whereas w represents the z-component of the velocity ~v at the bottom interface.

For the range of macroscopic and mesoscopic thicknesses, the no-slip condition can be
assumed at the bottom interface

~v � ~t = 0: (44)

Consequently, in these thickness ranges, friction arises in two different ways: there is bottom
friction due to (44), and there is viscous friction since �0 6= 0.

For microscopic continuous films, on the other hand, our model assumes that friction
arises solely by way of viscosity, i.e. in the form of internal friction, while there is full
slip of the film flow on the surface of the solid substrate. Consequently, the film viscosity
�0 in the case of microscopic films is inversely proportional to the molecular mobility. A
transition from mesoscopic to microscopic thicknesses therefore requires a corresponding
gradual relaxation of the no-slip boundary condition, converting no-slip into full slip eventually
for truly microscopic layers.

Finally, the thermal boundary condition at the bottom interface then gives (z = 0, ~n =
f0; 0;�1g)

@zT � Bif (T � Tf ) +Qf
I = 0: (45)

In (45), heat loss into the solid substrate is modelled by Newton’s law of cooling, expressed in
terms of a Biot number Bi 0f = (LJch=Tch)Bif . Here, Q0f = QfL designates a dimensionless
heat of reaction (per mole of B produced), Tf designates a reference temperature deep in the
interior of the solid substrate and k0�cpTch=h0LJch = 1 due to Equation (10). If the boundary
conditions at the top and at the bottom of the layer as given by Equations (18, 24–26, 32, 33,
39–45) are imposed on the solutions of the field equations (4–7), then the thermodynamic
state of the film is obtained, as will be demonstrated in the next section with the help of
the long-wave approximation. The evolution of the film is completely decoupled from the
dynamics of the ambient atmosphere and the solid substrate.

4. The long-wave approximation

The field equations (4–7) for the interaction of film flow with film transport of species and
heat form a difficult quasi-linear parabolic system of partial differential equations, for which
the problem of well-posedness has not been generally resolved [7, 28]. The field equations are
highly nonlinear and strongly coupled via the film thickness h and the boundary conditions,
with h representing an unknown variable yet to be determined. The equations therefore
correspond to a free-boundary problem.

In our treatment, the field equations and the boundary conditions are to be simplified
through the use of methods adapted from shallow-water hydraulics [7, 28]. These methods
prove to be particularly useful in providing a two-dimensional surface representation of the
flow in films of any thickness, thus permitting a unified treatment of both three-dimensional
bulk films and two-dimensional adsorption layers.

In its original formulation, shallow-water theory was designed for an investigation of
flow dynamics in tubes and shallow open ducts, based on total neglect of all friction effects.
Consequently, flows in shallow ducts are described by an Euler equation which expresses
neglect of internal friction. If full slip of the liquid on the bottom of the duct is assumed, then
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bottom friction is also neglected. Neglect of all friction is then found to lead to a hyperbolic
film equation [7, 28] for the evolution of the film thicknessh in time and space. This hyperbolic
film equation is shown to possess weak solutions describing surface shock waves which take
the form of hydraulic jumps, the so-called ‘bores’.

For thin films, on the contrary, the effect of friction, and therefore of dissipation is of
primary importance [3] and thus cannot be neglected. Consequently, shallow-water theory is
reformulated in terms of a distinguished limit which expresses the controlling influence of
the combined action of film transport and internal friction. The effect of bottom friction is
also fully retained. In the case of thin films, our treatment is shown to lead to a parabolic film
equation, for which the problems of degeneracy and ill-posedness arise.

The effects of film transport and film viscosity are expressed in terms of a Péclet number
Pe and the Schmidt number Sc which are defined as follows

Pe = v0=vs; Sc = �0=D0: (46)

Here, v0 designates a reference diffusion velocity of the film given in terms of the length h0

and the diffusivity D0 (cf. the scaling of the velocity as given by (9))

v0 = D0=h0: (47)

If D0 is expressed in terms of v0 and h0, the inverse of Sc is found to be a Reynolds number
Re = 1=Sc = h0v0=�0.

Due to the prevailing species gradient in the film, the velocity v0 characterizes film transport
by diffusion in the transverse direction. Transport in longitudinal directions is by film-flow
processes due to gradients in the pressure ph = p+�(h). In order to set up a simple model, the
liquid of the film is assumed to be barotropic and incompressible, i.e. p = p(�) = const. Con-
sequently, longitudinal film flow corresponds to processes of spreading and retraction driven
by gradients in the disjoining pressure �(h), which in fact correspond to wetting phenomena
[3]. As will be shown subsequently (see (103)), longitudinal flow in thin films represents a
generalized diffusion process given in terms of a diffusion coefficient Dl�@p0h=@h

0. Conse-
quently, the characteristic velocity vs of longitudinal flow is given by

v0s =
q
(h0=�)@p0h=@h

0: (48)

As before, primes indicate dimension variables.
Since v0, vs characterize transport processes which cross at right angles, Pe of Equation (46)

corresponds to a Péclet number as defined in convective diffusion in liquid boundary layers
[5]. The definition of vs by Equation (48) is based on ph = p+� representing a function of h
exclusively. That this is in fact the case for thin films will be shown shortly. Further, ph = ph(h)
represents a constitutive relationship which resembles p = p(�) for ordinary barotropic fluids,
pointing to an analogy between h (for thin films) and � (for ordinary barotropic fluids) which
was already noticed in shallow-water hydraulics [28]. Consequently, the velocity vs closely
resembles the sound speed in ordinary barotropic liquids which gives the speed of propagation
of weak pressure fluctuations. In the present case, the pressure fluctuations arise due to changes
in the layer thickness h.

Based on the definitions of Pe and Sc, the controlling influence of species diffusion and
film viscosity are expressed by

Pe � 1; Sc � 1; with 1=Sc Pe2 = O(1): (49)
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The condition of viscosity being high in comparison with film diffusivity (Sc� 1) ensures
that transverse transport is by diffusion. The condition of Pe � 1 ensures that transverse
diffusion is slow in comparison with longitudinal film flow. Thin-film dynamics are treated in
the limit Pe! 0 and Sc!1 which is a distinguished limit, since 1=(Sc Pe2) is to remain an
O(1)-quantity.

In order to investigate this distinguished limit, the Navier–Stokes equations for the flow
field are rewritten in terms of Pe and Sc. For the case of ph = ph(h), Equation (7) gives

(@t + ~v � r)~v = Sc
�
�
@ph

@h
rh+r2~v

�
: (50)

Since vs is defined by (48) in terms of dimensional variables, we find

1
Sc Pe2 =

h0

�0v0

h0

�

@(ph)
0

@h0
= h

@ph

@h
: (51)

Equation (50) is therefore found to become

(@t + ~v � r)~v = Sc
�
�

1
Sc Pe2

1
h
rh+r2~v

�
: (52)

In the distinguished limit as defined by (49), we therefore obtain

�
@ph

@h
rh+r2~v = 0: (53)

It is worth noting that shallow-water theory treats the opposite case of Re � 1 ([28]).
The distinguished limit defined by (49) leading to the reduced form of the Navier–Stokes

equations as given by (53) may be derived in the form of a long-wave limit, i.e. with the help
of the method of strained coordinates [29]. If l0 is defined to represent a length characterizing
the structures of the film, then for large structures, a small parameter a is given by

a = h0=l0 � 1: (54)

In order to describe longitudinal flows along the surface of the substrate, a ‘strained’ repre-
sentation of independent and dependent variables is introduced. For the coordinates x1; x2; z

and the velocity ~v = fu1; u2; wg we choose

fx1; x2; zg!fa�1x1; a
�1x2; zg

fu1; u2; wg! fu1; u2; awg

)
: (55)

The condition of high viscosity, i.e. Sc � 1, leads to transport processes being slow. These
are therefore represented in terms of a slow diffusion time defined by

t! (1=a)t: (56)

Due to the transformation of (9) which resulted in the dimensionless time (t = h2
0t
0=D0), the

limit t! t=a is seen to be equivalent to

D0! aD0: (57)
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Consequently, the operator (@t + ~v � r) which determines temporal change on the left-hand
sides of (5–7) results in strained coordinates as follows

(@t + ~v � r)! a(@t + ~u � rs + w@z): (58)

In strained variables, Equation (7) is found to give

a(@t + ~u � rs + w@z)fu1; u2; awg

= �fa@x1 ; a@x2 ; @zg(p+�) + (a2@2
x1
+ a2@2

x2
+ @2

z)fu1; u2; awg: (59)

The requirement of 1=(Sc Pe2) = O(1) necessitates that the pressure p + � is also to be
strained, so that straining is applied to the independent and also to some of the dependent
variables [29]

p+�! (1=a)(p+�): (60)

Under the condition of Equation (60), the following equations result from (59) in zeroth and
first order with respect to a

@z(p+�) = 0; (61)

�rs(p+�) + @2
z~u = 0: (62)

In (62), rs = f@x1 ; @x2 ; 0g designates the surface nabla and ~u = fu1; u2; 0g the longitu-
dinal velocity field.

Equation (61) shows that p+ � = ph represents a function of h exclusively. Therefore, a
Péclet number based on the velocity as defined by (48) is a useful concept.

Since (p+�) is independent of z according to (61), integration of (62) is straightforward.
The constants of integration may be found from (33) and (44).

For a surface given by z = h(x1; x2; t) spanning the (x1; x2)-plane, the vectors ~n and ~t of
normal and tangent (Figure 2) are found to be

~n = f�a@x1h;�a@x2h; 1g
1q

1 + a2(rsh)2

~t = f�a@x2h; a@x1h; 0g
1

a
q
(rsh)2

9>>>>>=
>>>>>;
: (63)

To lowest order in a, the deformation tensor D = (r~v )+ is found to be

D =
1
2

0
B@

0 0 u1;z

0 0 u2;z

u1;z u2;z 0

1
CA : (64)

Consequently,

D � ~n = @z~u; ~n � D � ~n = 0: (65)
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Use of (65) transforms the stress boundary conditions (32) and (33) at the top surface, which
gives

z = h:

(
(1=a)p = �� = �rs � ~n = ��a2r2

sh;

@z~u = �rs� = �(@�=@T )arsT:
(66)

In (66), the surface gradient is expressed with the help of rs in the form of a directional
derivative. Particularly, rs� = (d�=ds)~t andrsT = (dT=ds)~t.

Surface tension is assumed to be primarily determined by the surface temperature, i.e.
� = �(T ). Therefore, rs� may be expressed in terms of a Marangoni-numberM defined as

M = (@�=@T ): (67)

In order to retain the influence of surface tension and of the Marangoni effect in Equation
(66), � and M have to be strained along with (p+�) in the following manner

�! (1=a3)�; M! (1=a)M: (68)

In the strained variables, Equations (66) are found to give

z = h:

(
p = ��r2

sh;

@z~u = �MrsT:
(69)

The conditions at the outer surface of the film for the solution ~u of (62) is thus found to be
given in terms of the surface temperature T jz=h = Th which is yet to be determined. By way
of their boundary conditions, temperature T and species concentration C are coupled, which
complicates their derivation. The field equations, on the other hand, are easily integrated, since
they turn out to be linear due to D0! aD0 according to Equation (57).

Use of the strained variables of (55, 56) in (5) is found to give the following field equation
for the species concentration C in lowest order in a

@2
zC = 0; (70)

with the following boundary conditions according to (26) and (41)

Cjz=h = 1; Cjz=0 = 0: (71)

Consequently, the solution of (70) is found to be

C = z=h: (72)

Equation (72) leads to a parabolic reaction law [2].
If the strained variables as defined in (55) and (56) are used in (6), then the lowest order in

a of the temperature field T is found to be given by

@2
zT = 0: (73)

For the temperature field T , the boundary condition at the top surface of the film is given by
(39), which to lowest order in a reduces to

z = h: (1 +�T ) + @zT + Bi(T � T1) = 0: (74)
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For Equation (74), J =  (1 +�T jz=h) according to (18) has been used.
The boundary condition for T at the bottom is provided by (45), which to lowest order in

a gives

z = 0: @zT � Bif (T � Tf ) +Qf
I = 0: (75)

According to (43) and (72), I is given by

z = 0: I = d @zC = d=h: (76)

The two constants of integration �; � for the general solution of Equation (73),

T = �z + �; (77)

are determined from the following two equations derived from (74–76)

z = h: (1 +��h+��) + �+ Bi(�h + �)� BiT1 = 0

z = 0:�� Bif� + BifTf +Qf
d=h = 0

)
: (78)

For z = h, the surface temperature Th = T jz=h of the film is given as Th = �h+ � because
of (77). In terms of the solution for �; � of Equation (78) Th is found to be

Th =
(�Bif + Bi BifT1)h2 + (BifTf + BiT1 �  )h+Qf
d

hBif ( � + Bi)(h + 1=Bif + 1=( � + Bi))
: (79)

From (7), the Navier–Stokes equations result in strained variables (see (55) and (56)) in
reduced form as given by (53) for the longitudinal flow field ~u = fu1; u2; 0g. Our long-wave
approximation is thus found to correspond to the distinguished limit as defined by (49). With
the boundary conditions as given by (44) (for z = 0) and (69) (for z = h), we find

@2
z~u = rsph; ~ujz=0 = 0

@zujz=h = �MrsT = �M(@T=@h)rsh

)
: (80)

From (80), the solution ~u(z;h) is found to be

~u(z;h) =
z2

2
rsph + z

�
�M

@Th

@h
rsh� hrsph

�
: (81)

According to (69), p = ��r2
sh. Therefore ph = p + � = ��r2

sh + �(h), so the surface
gradient of ph becomes

rsph = ��r3
sh+

@�

@h
rsh: (82)

Use of (82) in (81) gives the complete expression for ~u(z;h) as

~u(z;h) = �zM
@Th

@h
rsh+ (�hz + z2=2)

�
��r3

sh+
@�

@h
rsh

�
; (83)
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where Th = Th(h) is given by (79).
For the determination of ~u to be complete, the unknown film thickness h is yet to be found.

Since the functional dependence of ~u on z is known from (83), the continuity equation (4)
may be integrated with respect to z to give the so-called ‘film equation’ which determines the
spatio-temporal evolution of the thickness h. This approach is in close parallel to shallow-
water theory, where the integration of the continuity equation with respect to the transverse
coordinate also leads to a film equation [28]. The film equation will be derived in the next
section.

5. The surface representation of film flow

The continuity equation (4) in strained variables (55) gives

rs � ~u+ @zw = 0: (84)

Equation (84) may be integrated across the film with respect to the transverse coordinate z

wh = w0 �

Z h

0
(rs � ~u) dz; (85)

where w0 and wh designate the transverse components of the velocity field at z = 0 and
z = h.

At z = 0, Equation (42) may be expressed in strained variables (55) which gives

�aw0 = E(I + J) = E(1� 
)I: (86)

Also, in strained variables (43) is found to give

d@zCjz=0 = I = d=h; (87)

where (72) has been used. Consequently, in order to retain a contribution due to the chemical
reaction on the surface of the substrate at z = 0, the parameter E needs to be strained also

E! aE: (88)

In terms of strained variables, w0 is then obtained from (86–88) as follows

w0 = �dE(1� 
)=h: (89)

At z = h, surface kinematics is expressed by (23). It may be combined with (24), to give

@th+ (E(J + I)� ~n � ~v )
q

1 + (rsh)2 = 0: (90)

In strained variables (55, 56, 63 and 68), Equation (90) is found to give

@th+ [E(J + I) + ~u � rsh� wh] = 0: (91)

Use of (89) and (91) in Equation (85) gives

@th+ [E(J + I) + ~u � rsh]z=h +
dE(1� 
)

h
+

Z h

0
(rs � ~u) dz = 0: (92)
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Equation (92) may be transformed by means of the Leibniz formula in the following form

rs �

Z h

0
~u dz =

Z h

0
(rs � ~u ) dz + ~u � rshjz=h:

Equation (92) is then found to give

@t +rs �

Z h

0
~u dz +E(J + I)z=h +

dE(1� 
)

h
= 0: (93)

For (93), J =  (1 +�Th) according to Equation (18), with Th given by (79).
In order to find I at z = h, Equation (25) has to be expressed in strained variables. Use of

(55, 63, 71 and 72) and restriction to lowest order gives

I = �d @zCjz=h = �d=h: (94)

Consequently, Equation (93) represents a closed evolution equation for h, determining the
contribution which is of first order in a. If (94) is inserted in (93), we find

@th+rs �

Z h

0
~u dz +EJ � dE
=h = 0: (95)

Thus we find that integration of the continuity equation with respect to the transverse coordinate
z (see (85)) results in a surface evolution equation as given by (95) which is of primary interest,
since its solution h(~x; t) leads to a complete determination of the thermo-hydrodynamics of
the transport problem for the thin surface layer.

Particularly,

~Q =

Z h

0
~u dz (96)

represents a surface flux, while the sink term EJ accounts for the vaporization losses of the
layer and the source term dE
=h gives the layer growth due to chemical reaction. Due to its
inverse dependence on h, the source term corresponds to what is known as a parabolic reaction
law in heterogeneous combustion.

An integration of the expression for ~u as given by (83) is found to give the surface flux ~Q

according to (96)

~Q = �hM
@Th

@h
rsh+

h3

3

�
�r3

sh�
@�

@h
rsh

�
: (97)

To lowest order in terms of a, the film equation is finally obtained in the form of a partial
differential equation for h which is of the parabolic type

@th+rs �

" 
�
h3

3
@�

@h
+
h3

3
�(rsrs)� hM

@Th

@h

!
� rsh

#
+EJ � dE




h
= 0: (98)

Equation (98) represents the surface flow of a liquid layer in the form of a generalized
reaction-diffusion process for the thickness h, with diffusion coefficientDl defined by

Dl =
h3

3
�(rsrs)�

h3

3
@�

@h
� hM

@Th

@h
: (99)
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In terms of Dl, Equation (98) becomes finally

@th+rs � [D
l(h)rsh] + (1=�)(wvap � wform) = 0; (100)

where wvap; wform represent the rate of film vaporization and the rate of film formation as
introduced in Section 1. In the long-wave approximation, we therefore find

wvap = �EJ; wform = �
dE(1=h): (101)

The diffusion coefficient Dl (see (99)) actually represents a differential operator, which
corresponds to what is commonly found for nonuniform systems by employing ‘gradient
theory’ [25, 30].

Our final equation (100) is given in terms of strained dimensionless variables. The inde-
pendent variables ~x, z, t and pressure p, mass fraction c of oxygen, temperature T were made
dimensionless by Equations (9) and (11). The coordinates ~x, z, t were then strained by (55)
and (56), as were the pressures p,� according to (60), the surface tension � and the Marangoni
number M according to (68), and the parameter E as defined by (24) according to (88). In
order to avoid clutter, no new letters were introduced to distinguish the strained from the
unstrained parameters.

If Marangoni effect and surface tension in the top surface of the layer are neglected (i.e.
M = 0, � = 0), then Dl is given as

Dl = �
h3

3
@�

@h
: (102)

According to Equation (61): ph = p(�) + �(h). For incompressible liquids � = const: and
hence we find

Dl = �
h3

3
@ph

@h
: (103)

Due to (103), the introduction (as in (48)) of the reference velocity vs characterizing surface
flow is found to be justified, since Dl� v2

s .
For the particular case of mesoscopic layers with �(h) given by (8), Dl is found to be

Dl = (�=h): (104)

Equation (100) represents a reaction-diffusion equation. Since both the sink and the source
term are functions of h, special values hi, (i = 1; 2; : : :) exist for which

J � d(
=h) = 0: (105)

Consequently, solutions of Equation (100) exist which are stationary films of constant thickness
h. These solutions define ‘dissipative phases’, so that general evolutions of the layer may be
interpreted in terms of coexistent dissipative surface phases for which phase transitions, i.e.
surface waves in the layer thickness, occur. Such an approach permits to bring in the methods
developed for the treatment of dynamical phase transitions [31] and for the description of
pattern formation in reaction-diffusion systems [32]. For thin films on reaction surfaces, this
approach has been investigated in [33, 34].
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6. Conclusion

It has been shown that the long-wave approximation for thin films on reaction surfaces is
the result of the application of a straining transformation which involves the independent
variables (55, 56) and certain dependent variables and parameters of the problem (60, 68 and
88). This approach is shown to correspond to a distinguished limit defined in terms of a
Péclet number and a Schmidt number, leading to a generalized reaction-diffusion equation for
the evolution of the layer thickness h (100) from which a complete solution for the thermo-
hydrodynamics of the layer is obtained. Since there may be an equilibrium, for certain values
of the thickness h, between film generation due to chemical reaction and film removal due
to evaporation, the introduction of the concept of dissipative phases in the form of stationary
uniform layers is justified. It is useful, since the thermo-hydrodynamics of liquid layers
covering reaction surfaces may then be treated by the application of advanced methods by
which an understanding of the dynamics of transitions of ordinary phases was achieved.
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